30 research outputs found

    Advanced Restoration Techniques for Images and Disparity Maps

    Get PDF
    With increasing popularity of digital cameras, the field of Computa- tional Photography emerges as one of the most demanding areas of research. In this thesis we study and develop novel priors and op- timization techniques to solve inverse problems, including disparity estimation and image restoration. The disparity map estimation method proposed in this thesis incor- porates multiple frames of a stereo video sequence to ensure temporal coherency. To enforce smoothness, we use spatio-temporal connec- tions between the pixels of the disparity map to constrain our solution. Apart from smoothness, we enforce a consistency constraint for the disparity assignments by using connections between the left and right views. These constraints are then formulated in a graphical model, which we solve using mean-field approximation. We use a filter-based mean-field optimization that perform efficiently by updating the dis- parity variables in parallel. The parallel updates scheme, however, is not guaranteed to converge to a stationary point. To compare and demonstrate the effectiveness of our approach, we developed a new optimization technique that uses sequential updates, which runs ef- ficiently and guarantees convergence. Our empirical results indicate that with proper initialization, we can employ the parallel update scheme and efficiently optimize our disparity maps without loss of quality. Our method ranks amongst the state of the art in common benchmarks, and significantly reduces the temporal flickering artifacts in the disparity maps. In the second part of this thesis, we address several image restora- tion problems such as image deblurring, demosaicing and super- resolution. We propose to use denoising autoencoders to learn an approximation of the true natural image distribution. We parametrize our denoisers using deep neural networks and show that they learn the gradient of the smoothed density of natural images. Based on this analysis, we propose a restoration technique that moves the so- lution towards the local extrema of this distribution by minimizing the difference between the input and output of our denoiser. Weii demonstrate the effectiveness of our approach using a single trained neural network in several restoration tasks such as deblurring and super-resolution. In a more general framework, we define a new Bayes formulation for the restoration problem, which leads to a more efficient and robust estimator. The proposed framework achieves state of the art performance in various restoration tasks such as deblurring and demosaicing, and also for more challenging tasks such as noise- and kernel-blind image deblurring. Keywords. disparity map estimation, stereo matching, mean-field optimization, graphical models, image processing, linear inverse prob- lems, image restoration, image deblurring, image denoising, single image super-resolution, image demosaicing, deep neural networks, denoising autoencoder

    Deep Mean-Shift Priors for Image Restoration

    Full text link
    In this paper we introduce a natural image prior that directly represents a Gaussian-smoothed version of the natural image distribution. We include our prior in a formulation of image restoration as a Bayes estimator that also allows us to solve noise-blind image restoration problems. We show that the gradient of our prior corresponds to the mean-shift vector on the natural image distribution. In addition, we learn the mean-shift vector field using denoising autoencoders, and use it in a gradient descent approach to perform Bayes risk minimization. We demonstrate competitive results for noise-blind deblurring, super-resolution, and demosaicing.Comment: NIPS 201

    FaceShop: Deep Sketch-based Face Image Editing

    Get PDF
    We present a novel system for sketch-based face image editing, enabling users to edit images intuitively by sketching a few strokes on a region of interest. Our interface features tools to express a desired image manipulation by providing both geometry and color constraints as user-drawn strokes. As an alternative to the direct user input, our proposed system naturally supports a copy-paste mode, which allows users to edit a given image region by using parts of another exemplar image without the need of hand-drawn sketching at all. The proposed interface runs in real-time and facilitates an interactive and iterative workflow to quickly express the intended edits. Our system is based on a novel sketch domain and a convolutional neural network trained end-to-end to automatically learn to render image regions corresponding to the input strokes. To achieve high quality and semantically consistent results we train our neural network on two simultaneous tasks, namely image completion and image translation. To the best of our knowledge, we are the first to combine these two tasks in a unified framework for interactive image editing. Our results show that the proposed sketch domain, network architecture, and training procedure generalize well to real user input and enable high quality synthesis results without additional post-processing.Comment: 13 pages, 20 figure

    Image Restoration using Plug-and-Play CNN MAP Denoisers

    Full text link
    Plug-and-play denoisers can be used to perform generic image restoration tasks independent of the degradation type. These methods build on the fact that the Maximum a Posteriori (MAP) optimization can be solved using smaller sub-problems, including a MAP denoising optimization. We present the first end-to-end approach to MAP estimation for image denoising using deep neural networks. We show that our method is guaranteed to minimize the MAP denoising objective, which is then used in an optimization algorithm for generic image restoration. We provide theoretical analysis of our approach and show the quantitative performance of our method in several experiments. Our experimental results show that the proposed method can achieve 70x faster performance compared to the state-of-the-art, while maintaining the theoretical perspective of MAP.Comment: Code and models available at https://github.com/DawyD/cnn-map-denoiser . Accepted for publication in VISAPP 202

    Efficient Blind-Spot Neural Network Architecture for Image Denoising

    Full text link
    Image denoising is an essential tool in computational photography. Standard denoising techniques, which use deep neural networks at their core, require pairs of clean and noisy images for its training. If we do not possess the clean samples, we can use blind-spot neural network architectures, which estimate the pixel value based on the neighbouring pixels only. These networks thus allow training on noisy images directly, as they by-design avoid trivial solutions. Nowadays, the blind-spot is mostly achieved using shifted convolutions or serialization. We propose a novel fully convolutional network architecture that uses dilations to achieve the blind-spot property. Our network improves the performance over the prior work and achieves state-of-the-art results on established datasets
    corecore